THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050A Mathematical Analysis I (Fall 2022) Suggested Solution of Homework 5

(1) (a) Fix
$$\epsilon > 0$$
. Take $\delta = \frac{\epsilon}{4a^3}$. If $|x - y| < \delta$, then
 $|x^4 - y^4| = |x^2 + y^2||x + y||x - y| < 4a^3\delta = \epsilon$.

Hence, f is uniformly continuous on [0, a].

(b) Take $x_n = (n+1)^{1/4}$, $y_n = n^{1/4}$. Then for any $n \in \mathbb{N}$

$$|x_n^4 - y_n^4| = 1$$

and

$$|x_n - y_n| = \frac{1}{((n+1)^{1/2} + n^{1/2})((n+1)^{1/4} + n^{1/4})} \to 0$$

as $n \to \infty$. Hence, f is not uniformly continuous on $[0, \infty)$.

(2) (a) Take $x_n = \frac{1}{n^3}$. Then

$$\frac{|x_n^{1/3} - 0|}{x_n - 0} = \frac{1/n}{1/n^3} = n^2 \to \infty$$

as $n \to \infty$. Hence, f is not Lipschitz on [0, 1].

(b) Fix $\epsilon > 0$. Take $\delta = \frac{\epsilon^3}{2}$. If $|x - y| < \delta$, then $|x^{1/3} - u^{1/3}| \le (|x - y| + |3x^{1/3}u^{1/3}||x^{1/3} - u^{1/3}||x^{1$

$$\begin{split} |x^{1/3} - y^{1/3}| &\leq (|x - y| + |3x^{1/3}y^{1/3}||x^{1/3} - y^{1/3}|)^{1/3} \\ &\leq (|x - y| + |x^{2/3} + x^{1/3}y^{1/3} + y^{2/3}||x^{1/3} - y^{1/3}|)^{1/3} \\ &= (2|x - y|)^{1/3} \\ &< (2\delta)^{1/3} \\ &= \epsilon. \end{split}$$

Hence, f is uniformly continuous on [0, 1].

- (3) (a) Since f is continuous on [0, k], f is uniformly continuous on [0, k]. Thus there exists M > 0 such that |f(x)| < M for any $x \in [0, k]$. Take $\tilde{L} = \max\{L, M\}$. Then $|f(x)| < \tilde{L}$ for any $x \in [0, \infty)$.
 - (b) Fix $\epsilon > 0$. Since $\lim_{x\to\infty} f(x) = \alpha$, there exists M > 0 such that for any x > M, $|f(x) - \alpha| < \frac{\epsilon}{2}$. If x, y > M, then $|f(x) - f(y)| \le |f(x) - \alpha| + |f(y) - \alpha| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. On the other hand, since f is continuous on [0, M + 1], f is uniformly continuous on [0, M + 1]. Thus there exists $\delta > 0$ such that for any $x, y \in [0, M + 1]$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$. Take $\tilde{\delta} = \min\{\delta, 1\}$. For any $x, y \in [0, M + 1]$, if $|x - y| < \tilde{\delta}$, then either $x, y \in [0.M + 1]$ or $x, y \in [M, \infty)$. If $x, y \in [M, \infty)$, then $|f(x) - f(y)| < \epsilon$. If $x, y \in [0.M + 1]$, since $|x - y| < \tilde{\delta} \le \delta$, $|f(x) - f(y)| < \epsilon$. Hence, f is uniformly continuous on $[0, \infty)$.
- (4) Suppose there exists $x, y \in [0, 1]$ such that $f(x) \neq f(y)$. Without loss of generality, assume f(x) < f(y). By density of \mathbb{Q} , there exists $q \in \mathbb{Q}$ such that f(x) < q < f(y). Since f is continuous, by Intermediate Value Theorem, there exists x < z < y such that f(z) = q. Contradiction arises!